
Journal of Computational Physics 229 (2010) 3989–4016
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A first-order system approach for diffusion equation. II: Unification
of advection and diffusion

Hiroaki Nishikawa *

National Institute of Aerospace, 100 Exploration Way, Hampton, VA 23666, USA
a r t i c l e i n f o

Article history:
Received 16 July 2009
Received in revised form 20 October 2009
Accepted 26 October 2009
Available online 1 November 2009

Keywords:
Advection–diffusion
Hyperbolic system
Fast convergence
OðhÞ time step
Cell Reynolds number
Boundary layer
Unstructured grids
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.10.040

q DOI of original article: 10.1016/j.jcp.2007.07.029
* Tel.: +1 757 864 7244.

E-mail address: hiro@nianet.org
a b s t r a c t

In this paper, we unify advection and diffusion into a single hyperbolic system by extending
the first-order system approach introduced for the diffusion equation [J. Comput. Phys.,
227 (2007) 315–352] to the advection–diffusion equation. Specifically, we construct a uni-
fied hyperbolic advection–diffusion system by expressing the diffusion term as a first-order
hyperbolic system and simply adding the advection term to it. Naturally then, we develop
upwind schemes for this entire system; there is thus no need to develop two different
schemes, i.e., advection and diffusion schemes. We show that numerical schemes con-
structed in this way can be automatically uniformly accurate, allow OðhÞ time step, and
compute the solution gradients (viscous stresses/heat fluxes for the Navier–Stokes equa-
tions) simultaneously to the same order of accuracy as the main variable, for all Reynolds
numbers. We present numerical results for boundary-layer type problems on non-uniform
grids in one dimension and irregular triangular grids in two dimensions to demonstrate
various remarkable advantages of the proposed approach. In particular, we show that
the schemes solving the first-order advection–diffusion system give a tremendous
speed-up in CPU time over traditional scalar schemes despite the additional cost of carry-
ing extra variables and solving equations for them. We conclude the paper with discussions
on further developments to come.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we unify advection and diffusion into a single hyperbolic system by extending the first-order system ap-
proach introduced for the diffusion equation in [1] to the advection–diffusion equation. We show that advection and diffu-
sion terms can be very naturally integrated into a single hyperbolic system, and that numerical schemes constructed for the
hyperbolic system will have remarkable advantages, including OðhÞ time step, uniform accuracy, accurate solution gradients
for all Reynolds numbers. There is no need to develop two different schemes, i.e., advection and diffusion schemes, for the
advection–diffusion equation.

1.1. First-order system approach for diffusion

In the first-order system approach [1], we compute a steady state solution of the diffusion equation,
ut ¼ muxx; ð1:1Þ
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2009.10.040
http://dx.doi.org/10.1016/j.jcp.2007.07.029
mailto:hiro@nianet.org
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

3990 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
where m > 0, by integrating in time the following first-order hyperbolic diffusion system:
ut ¼ mpx;

pt ¼ ðux � pÞ=Tr ;
ð1:2Þ
where p is a variable that approaches the solution gradient at the time scale of Trð> 0Þ. This system is known as a system of
hyperbolic heat equations [2–4]; it is equivalent to the diffusion equation (1.1) in the limit, Tr ! 0 (so that p relaxes to ux

rapidly and p! ux at any instant of time). Tr is often called the relaxation time. There have been many attempts to develop
numerical methods for such relaxation systems [2,5–8], often with a particular focus on the stiff source term: an explicit
time step, Dt ¼ OðTrÞ ! 0, is prohibitively restricted due to the extremely small relaxation time; an implicit treatment of
the stiff source term could degrade the solution accuracy [9]. Our first-order system approach is different from these relax-
ation methods in that we use the first-order diffusion system specifically for computing a steady state solution of the diffu-
sion equation (1.1). The key idea is that the first-order hyperbolic diffusion system (1.2) is equivalent to the original diffusion
equation in the steady state for arbitrary Tr . Hence, Tr does not have to be small; the stiffness is not an issue for steady state
computations. The system is hyperbolic, having the eigenvalues,
�
ffiffiffiffiffi
m
Tr

r
;

ffiffiffiffiffi
m
Tr

r
; ð1:3Þ
which are real for any positive Tr . Hence, we simply apply an advection scheme and march in time until the solution stops
changing, with Tr chosen specifically for accelerating the convergence towards the steady state. We have shown in [1] that
numerical schemes derived from this approach allow OðhÞ time step (instead of Oðh2Þ time step which is typical to diffusion
schemes) and converge very rapidly towards a steady state, simultaneously computing the solution gradient to the same
order of accuracy as the main variable. We now extend the first-order system approach to the advection–diffusion equation.
1.2. Unification of advection and diffusion

Consider the advection–diffusion equation,
ut þ aux ¼ muxx; ð1:4Þ
where a > 0 and m > 0. This equation is typically viewed as a sum of advection and diffusion, and numerical schemes are
generally constructed by adding a diffusion scheme to an advection scheme. However, in some cases, such a simple construc-
tion is known to destroy the formal accuracy of the two schemes, resulting in a lower order scheme; it requires a very careful
tuning of the balance between the two schemes of different nature [10–13]. In this paper, we avoid this problem by solving
the following first-order advection–diffusion system:
ut þ aux ¼ mpx;

pt ¼ ðux � pÞ=Tr ;
ð1:5Þ
which is obtained simply by adding the advection term to the hyperbolic diffusion system (1.2). The system, of course, re-
mains hyperbolic; it has now the following eigenvalues,
1
2

a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4m

Tr

s" #
;

1
2

aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4m

Tr

s" #
: ð1:6Þ
It is striking that the balance between advection and diffusion is automatically embedded in a single hyperbolic system as it
manifests itself in the expression of the eigenvalues. We have just unified advection and diffusion, in the differential level, into
a single hyperbolic system. Naturally, we then simply consider developing upwind schemes for the entire advection–diffu-
sion system; it is no longer necessary to develop advection and diffusion schemes separately and carefully combine them.
Numerical schemes constructed in this way will have, for example, the following advantages over traditional schemes:

� Rapid convergence towards a steady state with OðhÞ time step for all Reynolds numbers.
� Uniform accuracy over all Reynolds numbers.
� Solution gradients can be computed simultaneously to the equal order of accuracy as the main variable.

We emphasize that these are direct consequences of solving the first-order hyperbolic differential system, not specific to a
particular discretization method. Any numerical schemes which discretize the first-order advection–diffusion system con-
sistently, accurately, and stably are expected to have these advantages. In this paper, we demonstrate these features in
one and two dimensions by a representative discretization method on non-uniform grids.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 3991
1.3. Outline

In the next section, we begin by analyzing the one-dimensional first-order advection–diffusion system. In particular, we
show that the time scale, Tr , and the associated length scale, Lr , can be determined in the differential level by optimizing the
system for a fast convergence towards a steady state. Having defined the first-order advection–diffusion system completely
in the differential level, we discuss the OðhÞ time step property and its implication on the number of iterations and the CPU
time to reach a steady state. Next, we construct a compact second-order upwind scheme for the first-order advection–
diffusion system. The accuracy of the scheme is discussed in relation to the positivity of the scheme in the steady state.
We also show that the scheme can be implemented in the form of a finite-volume scheme. In Section 3, we extend the
one-dimensional analysis to two dimensions, and develop a multidimensional upwind scheme for unstructured triangular
grids. In Section 4, we present numerical results to demonstrate remarkable advantages of the proposed method, for both
one-dimensional and two-dimensional boundary-layer type problems, including fully irregular triangular grids. Finally, in
Section 5, we discuss further developments to come.

2. One dimension

2.1. First-order advection–diffusion system

Consider the one-dimensional advection–diffusion problem,
ut þ aux ¼ muxx in X ¼ ð0;1Þ; ð2:1Þ
where uð0Þ and uð1Þ are given as boundary conditions, a is a positive advection speed, and m is a positive diffusion coefficient.
To compute the steady state solution to this problem, we propose to solve instead the following first-order system,
Ut þ AUx ¼ Q ; ð2:2Þ
where
U ¼
u

p

� �
; A ¼

a �m
�1=Tr 0

� �
; Q ¼

0
�p=Tr

� �
; ð2:3Þ
where Tr is a free parameter. This system is hyperbolic since A has real eigenvalues,
k1 ¼
a
2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

a2Tr

s" #
; k2 ¼

a
2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

a2Tr

s" #
; ð2:4Þ
and linearly independent right-eigenvectors which are written in the matrix form as
R ¼
�k1Tr �k2Tr

1 1

� �
: ð2:5Þ
It is easy to show (simply by setting the time derivatives to be zero) that this system is equivalent to the advection–diffusion
equation (2.1) in the steady state for arbitrary Tr . In [1], for pure diffusion problems, we defined Tr such that the entire right
hand side of the system proportional to m, thereby making the transient behavior of the solution independent of m. Here, we
take a more general approach. We define Tr as the ratio of a length scale, denoted by Lr , to the characteristic wave speed of
the system, thus equalizing the relaxation time scale and the characteristic time scale to enhance the convergence towards
the steady state. That is, we set
Tr ¼
Lr

k2
¼ Lr

a
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

a2Tr

qh i ; ð2:6Þ
where k2 has been chosen (instead of k1) to keep the speed positive in both advection and diffusion limits. Solving this equa-
tion for Tr , we obtain
Tr ¼
Lr

aþ m=Lr
: ð2:7Þ
In the diffusion limit ða! 0Þ, this reduces precisely to the form of Tr defined in [1]: Tr ¼ L2
r =m. It follows from this that the

characteristic speed in the diffusion limit, denoted by ad, can be expressed as
ad � �
ffiffiffiffiffi
m
Tr

r
¼ � m

Lr
: ð2:8Þ
We now substitute (2.7) back into the eigenvalues (2.4) to find
k1 ¼ �
a

ReLr

; k2 ¼ a 1þ 1
ReLr

� �
; ð2:9Þ

3992 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
where we have introduced the Reynolds number associated with Lr ,
Fig. 1.
wave (t
ReLr �
aLr

m
: ð2:10Þ
Observe that as ReLr ! 0, the eigenvalues reduce to the diffusion characteristic speeds (2.8), while as ReLr !1, they ap-
proach 0 and a, implying scalar advection. In fact, the Reynolds number, ReLr , is exactly the ratio of the pure advection speed
to the diffusion speed:
ReLr ¼
aLr

m
¼ a

m=Lr
¼ a
jadj

: ð2:11Þ
This is the key dimensionless parameter in the first-order advection–diffusion system that describes the balance between
advection and diffusion. The right-eigenvector matrix (2.5) can now be simplified and written in terms of ReLr :
R ¼
Lr

ReLr þ 1
�Lr

1 1

24 35: ð2:12Þ
The corresponding left-eigenvector matrix is given by
L ¼ R�1 ¼ 1
Lr

ReLr þ 1
ReLr þ 2

1 Lr

�1
Lr

ReLr þ 1

24 35: ð2:13Þ
It is insightful to look at a wave structure in a Riemann problem; a typical wave structure is shown in Fig. 1. Generally,
two waves are created at the interface: left-moving and right-moving waves corresponding to the wave speeds given by
(2.9). In the advection limit, the left-moving wave approaches the t-axis while the right-moving wave becomes the pure
advection wave (the dotted line). In the diffusion limit, the left- and right-moving waves form a symmetric wave structure
with the same wave speed of opposite sign. Note that right-moving wave is always faster than the pure advection wave
while the left-moving wave is always slower than the pure advection wave.

We gain further insight by considering the decomposition of A:
A ¼ RKL ¼ k1P1 þ k2P2; ð2:14Þ
where
K ¼
k1 0
0 k2

� �
; ð2:15Þ

P1 ¼ r1‘1 ¼

1
ReLr þ 2

Lr

ReLr þ 2
ReLr þ 1
ReLr þ 2

1
Lr

ReLr þ 1
ReLr þ 2

2664
3775; ð2:16Þ

P2 ¼ r2‘2 ¼

ReLr þ 1
ReLr þ 2

�Lr

ReLr þ 2

�ReLr þ 1
ReLr þ 2

1
Lr

1
ReLr þ 2

2664
3775; ð2:17Þ
and rk and ‘k are the k-th column of R (k-th right-eigenvector) and the k-th row of L (k-th left-eigenvector), respectively. The
matrices, P1 and P2, are the projection matrices which project the system (or a solution change) onto the corresponding
subspaces: the left-running and right-running waves, respectively. Naturally, they have the following properties:
P1P1 ¼ P1; P2P2 ¼ P2; P1P2 ¼ 0: ð2:18Þ
A typical wave structure for the hyperbolic advection–diffusion system in a Riemann problem. The dotted line indicates a reference pure advection
he advection limit of the right-moving wave).

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 3993
It is interesting that these projection matrices can be expressed as, for both i ¼ 1 and 2,
Pi ¼
ReLr

ReLr þ 2
PA

i þ
2

ReLr þ 2
PD

i ; ð2:19Þ
where PA
i and PD

i are the projection matrices in the advection and diffusion limits:
PA
i ¼ lim

ReLr!1
Pi; PD

i ¼ lim
ReLr!0

Pi: ð2:20Þ
This means that each subspace is a linear combination of its own limits: pure advection and diffusion. This suggests that we
may construct an advection–diffusion scheme by combining a pure advection scheme and a pure diffusion scheme by using
the weights as in (2.19). This type of construction may be useful in applications to more complex equations, and will be
investigated in future. Here, we do not consider such a construction. We rather consider developing a scheme for the entire
advection–diffusion system (2.2); such a linear combination emerges as a result.

The time scale Tr has now been clearly determined; it is the length scale Lr that is a free parameter. We determine Lr in the
next section such that the first-order advection–diffusion system is made further suited for steady state computations.

2.2. Length scale Lr

In the previous study [1], for pure diffusion problems, the length scale Lr was chosen to optimize a given numerical
scheme in terms of error damping or propagation. Here, we consider determining Lr in the differential level, i.e., solely based
on the character of the first-order advection–diffusion system. Specifically, we shall choose Lr to minimize a measure of the
stiffness of the system, thereby reaching the steady state as quickly as possible. Consider a Fourier mode of phase angle (or
nondimensional wave number) b 2 ½0;p�,
Ub ¼ eibx=hU0; ð2:21Þ
where Ub ¼ ðub; pbÞ; i ¼
ffiffiffiffiffiffiffi
�1
p

; U0 ¼ ðu0; p0Þ, and h may be considered as a mesh size of a computational grid, so that the Fou-
rier mode can be taken as a discrete mode on the computational grid with the smoothest mode given by b ¼ ph. Inserting
this into the advection–diffusion system (2.2), we obtain
dUb

dt
¼ MUb; ð2:22Þ
where
M ¼
� iab

h
imb
h

ib
hTr

� 1
Tr

2664
3775: ð2:23Þ
The eigenvalues of this matrix are given by
kM
1;2 ¼ �

1
2

1
Tr
þ iab

h

� �
�

ffi
1
Tr
� iab

h

� �2

� 4mb2

h2Tr

s24 35: ð2:24Þ
If these are complex conjugate, the system will be perfectly conditioned because they will have the same propagation speed
(magnitude of the imaginary part) and damping factor (the real part). For the diffusion system, this is possible, but not for the
advection–diffusion system since we have in the advection limit ðm! 0Þ
kM
1;2 ! �

iab
h
; � 1

Tr
; ð2:25Þ
which are pure imaginary and pure real. To deal with this mixed case, borrowing the idea from local preconditioning tech-
niques [14,15], we consider equalizing the magnitude of the eigenvalues:
kM
1

�� ��
kM

2

�� �� ¼ 1; ð2:26Þ
i.e., equalize the combined effect of propagation and damping. Solving this for Tr , we find two solutions: negative and po-
sitive. The positive solution is given by
Tr ¼ �
m
a2 þ

1
a

ffi
m
a

� 	2
þ h

b

� �2
s

: ð2:27Þ
We then set b ¼ ph to enforce the condition (2.26) for the most persistent (smoothest) error mode,
Tr ¼ �
m
a2 þ

1
a

ffi
m
a

� 	2
þ 1

p2

r
: ð2:28Þ

3994 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
Now, equating this with (2.7) and solving for Lr , we again find two solutions:
Lr ¼
1
2
� m

a

� 	
þ

ffi
m
a

� 	2
þ 1

p

� �2
s

�

ffi
�2

m
a

� 	2
þ 1

p

� �2

þ 2
m
a

� 	 ffi
m
a

� 	2
þ 1

p

� �2
svuut264

375: ð2:29Þ
The positive solution can be written as
Lr ¼
1

2p
Repffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Re2
p

q
þ 1
þ

ffi
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Re2
p

q
þ 1

vuut
264

375; ð2:30Þ
where
Rep �
að1=pÞ

m
: ð2:31Þ
This is the length scale that yields the perfect conditioning for the entire range of the Reynolds number, Rep. Fig. 2 shows a
plot of the optimal Lr versus Rep. We observe that the variation of Lr is confined within a narrow region, approximately
0:01 6 Rep 6 10. Fig. 3 shows the condition number, K ¼ kM

1

�� ��= kM
2

�� ��, for the optimal formula (2.30) in comparison with a con-
stant value, Lr ¼ 1

p, which is the optimal value in the advection limit. Clearly, the optimal formula yields the perfect condi-
tioning of K ¼ 1 while the other choice introduces non-optimal conditioning over the intermediate region. But we also see
that this non-optimal Lr results in the perfect conditioning in the diffusion limit (as well as in the advection limit). This is
because the optimal Lr is not unique in the diffusion limit: the eigenvalues become complex conjugate for small Rep and
Lr >

1
2p (which includes both choices above), and thus we have kM

1

�� �� ¼ kM
2

�� ��.
The first-order advection–diffusion system has now completely defined in the differential level, independently of discret-

ization methods.

2.3. OðhÞ Time step

Simply because the first-order advection–diffusion system is hyperbolic, the time step for any explicit scheme is re-
stricted based on the CFL condition:
Dt ¼ CFL
hmin

aþ m=Lr
; ð2:32Þ
where CFL is the CFL number (6 1, typically), hmin is the minimum mesh size for a given mesh, and aþ m=Lr is the maximum
wave speed of the first-order advection–diffusion system (2.2). This shows, since Lr ¼ Oð1Þ as in (2.30), that the time step is
proportional to the mesh size (not squared) for all Reynolds numbers. Note that this OðhÞ time step is a direct consequence of
solving the hyperbolic advection–diffusion system, not a property of a particular numerical scheme. Any explicit scheme,
Fig. 2. Plot of the optimal Lr (2.30). Ladv
r ¼ 1

p and Ldiff
r ¼ 1ffiffi

2
p

p are the limiting values.

Fig. 3. The condition number, K ¼ kM
1

�� ��= kM
2

�� ��, versus log10Rep: solid – optimal Lr (2.30), dashed – Lr ¼ 1
p.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 3995
e.g., finite-volume or finite-element schemes, developed for the hyperbolic advection–diffusion system will allow this
remarkably large time step. Compare this with the well-known time step restriction for common scalar schemes (e.g., central
or upwind schemes (2.62) or (2.66), augmented with the forward Euler time-stepping):
Dt ¼ CFL
hmin

aþ 2m=hmin
: ð2:33Þ
This is Oðh2Þ in general, unless advection dominates everywhere in the domain (i.e., it depends on Reynolds numbers). This is
a very severe restriction; it is one of the motivations for employing implicit schemes. For example, when h ¼ 10�7 which may
be required to resolve a boundary layer, Oðh2Þ time step gives a time step of Oð10�14Þ, which is almost machine zero. OðhÞ
time step, on the other hand, gives a time step of Oð10�7Þ, which is substantially larger.

To see an impact of the size of time steps on the number of iterations (total time steps) to reach a steady state, suppose
that the steady state is reached at t ¼ tf with nf iterations:
tf ¼ nf Dt; ð2:34Þ
and thus
nf ¼
tf

Dt
: ð2:35Þ
The time tf may somewhat depend on the equations solved: the first-order system or the diffusion equation (the solution
follows different transient physics). However, in each case, it is constant for a given problem and initial solution, and more
importantly it is independent of the time step and the grid size. Hence, we write
nf ¼ O
1
Dt

� �
: ð2:36Þ
Now, since h / 1=N where N is the number of unknowns, we obtain
nf ¼
OðNÞ for Dt ¼ OðhÞ;
OðN2Þ for Dt ¼ Oðh2Þ:

(
ð2:37Þ
Therefore, the number of iterations is proportional to the number of unknowns (not squared) with OðhÞ time step. This
means that OðhÞ time step gives OðNÞ times faster convergence than Oðh2Þ time step; the factor grows substantially with
the problem size. This is a tremendous advantage of OðhÞ time step over Oðh2Þ time step. We point out that this type of con-
vergence with Dt ¼ OðhÞ is not observed in general by stationary iterative methods (i.e., those which use only the solution or
the residual at the previous iteration) for traditional diffusion schemes, such as the Jacobi, the Gauss–Seidel, or the successive
over-relaxation (SOR). These well-known methods all correspond to Oðh2Þ time-step schemes.

3996 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
The above argument can be immediately translated into the CPU time. Each iteration requires OðNÞ operations: residual
computations and solution updates. Therefore, the CPU time required to reach the steady state, denoted by CPU, is estimated
by
Table 1
Comple
Oð1=hÞ

Time

nf

CPU
CPU ¼ nf � OðNÞ ¼
OðN2Þ for Dt ¼ OðhÞ;
OðN3Þ for Dt ¼ Oðh2Þ:

(
ð2:38Þ
Hence, OðhÞ time step gives OðNÞ speed-up also in actual computing time. Note again that the speed-up factor is not a con-
stant but grows with the problem size: the finer the grid, the faster the convergence in both the iteration number and the
CPU time. We point out here that compared with traditional scalar schemes for the advection–diffusion equation, the first-
order system approach requires system schemes which involve more operations per iteration. However, it does not affect the
above estimates because it only introduces a constant factor. Even if an OðhÞ time-step scheme requires 10 times more oper-
ations per degree of freedom, it will be OðN=10Þ faster in one dimension than traditional schemes, which can be quite sub-
stantial for large scale problems, N � 10. In effect, the extra cost of carrying gradient variables and their equations in the
first-order system approach is overwhelmed by the speed-up factor for large N.

Note that OðhÞ time step extends straightforwardly to two and three dimensions simply because the first-order advec-
tion–diffusion system is hyperbolic for all dimensions. Noting that h / 1=N

1
2 in two dimensions and h / 1=N

1
3 in three dimen-

sions, we obtain similar results as summarized in Table 1. We see from Table 1 that, as we would naturally expect, OðhÞ time
step gives Oð1=hÞ times faster convergence over Oðh2Þ time step in both the iteration number and the CPU time in all dimen-
sions: N; N1=2; N1=3 times faster in one, two, and three dimensions, respectively.

It is possible to translate the above estimates further into relations between the solution error and the CPU time. Assume
that a scheme is p-th order accurate ðp P 1Þ, so that the solution error, E, measured in some norm of interest is given by
E ¼ OðhpÞ: ð2:39Þ
In one dimension, we have OðhpÞ ¼ OðN�pÞ, and therefore it follows from (2.38) that
E ¼ OðN�pÞ ¼ OðCPU�p=2Þ for Dt ¼ OðhÞ;
OðCPU�p=3Þ for Dt ¼ Oðh2Þ:

(
ð2:40Þ
Note that the exponent to CPU is smaller (i.e., larger in magnitude) for OðhÞ time-step. It means that schemes with OðhÞ time-
step give a smaller solution error for a fixed CPU time. We can also express (2.40) conversely as
CPU ¼
OðE�2=pÞ for Dt ¼ OðhÞ;
OðE�3=pÞ for Dt ¼ Oðh2Þ;

(
ð2:41Þ
meaning that it takes less CPU time for OðhÞ time-step schemes to produce a solution at a specified error level. Including
results for two and three dimensions, these estimates are summarized in Table 2.

If implicit time-stepping schemes are employed to drive the solution to the steady state, the CFL number can be infinitely
large in principle for both OðhÞ and Oðh2Þ time steps. The steady solution is then obtained by solving a linear system arising
from the linearization of the residual, i.e., inversion of a global N � N Jacobian matrix. The size of the Jacobian matrix is larger
for OðhÞ time-step schemes based on the first-order advection–diffusion system by the number of the gradient variables (1 in
1D, 2 in 2D, 3 in 3D). However, the benefit of OðhÞ time-step comes in the condition number of the Jacobian matrix: OðNÞ for
OðhÞ time-step schemes against OðN2Þ for Oðh2Þ time-step schemes; iterative methods will converge much faster for OðhÞ
time-step schemes. Another benefit is expected in the construction of the Jacobian matrix. Especially for unstructured grids,
the exact linearization may not be practical because of an extended stencil required for discretizing the second derivative of
diffusion. Often, an approximate Jacobian matrix is employed instead, and consequently the CFL number cannot be infinite
although could still be larger than 1. On the other hand, there are no second derivatives in the first-order advection–diffusion
system. Hence, it can be discretized within a compact stencil (as shown in this paper), and the construction of the exact Jaco-
bian matrix can be made easier. It should be noted also that OðhÞ time-step schemes can produce accurate solution gradients
simultaneously. Detailed study on implicit schemes is a subject of future work.
xity comparisons of OðhÞ and Oðh2Þ time steps. In all dimensions, OðhÞ time step gives faster convergence in both the iteration number and the CPU time:
times faster. The factor grows with the problem size.

One dimension Two dimensions Three dimensions

step: OðhÞ Oðh2Þ OðhÞ Oðh2Þ OðhÞ Oðh2Þ

OðNÞ OðN2Þ O N1=2
� 	

OðNÞ O N1=3
� 	

O N2=3
� 	

OðN2Þ OðN3Þ O N3=2
� 	

OðN2Þ O N4=3
� 	

O N5=3
� 	

Table 2
Relations between CPU time and solution error.

One dimension Two dimensions Three dimensions

Time step: OðhÞ Oðh2Þ OðhÞ Oðh2Þ OðhÞ Oðh2Þ

CPU OðE�2=pÞ OðE�3=pÞ OðE�3=pÞ OðE�4=pÞ OðE�4=pÞ OðE�5=pÞ
E OðCPU�p=2Þ OðCPU�p=3Þ OðCPU�p=3Þ OðCPU�p=4Þ OðCPU�p=4Þ OðCPU�p=5Þ

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 3997
2.4. Discretization

To discretize the first-order advection–diffusion system, we employ the residual-distribution method: nodal solutions
and cell-residuals. The method is known to achieve a design accuracy in the steady state with a compact stencil (involving
the neighbor nodes only) on irregular meshes for equations with source terms [1,16,17]. These properties are particularly
attractive for our purpose because we are interested only in the steady state; the first-order advection–diffusion system
has a source term; non-uniform meshes are required to efficiently resolve boundary layers. It is, of course, possible to employ
other methods such as finite-volume or finite-element methods. Many properties of the scheme we are going to develop here
are direct consequences of solving the first-order advection–diffusion system, and therefore, can be shared by other meth-
ods. In fact, the scheme we construct here can be viewed, as will be shown later, as a finite-volume scheme. In any case, it
will be a compact three-point difference scheme, involving only the nearest neighbors at every data point.

We begin by generating a set of nodes, fJg, with coordinates, xj, distributed arbitrarily over the domain of interest. With
the solution stored at each node, ðuj; pjÞ; j 2 fJg, and two boundary conditions given for u, the task is to compute the steady
state solution: fujg at the interior nodes and fpjg at all nodes. Note, as in the pure diffusion case [1] that the number of un-
knowns will be exactly equal to the number of cell-residuals: all the cell-residuals can be driven to zero exactly in the steady
state, thus implying the existence of a unique solution set. We remark that this is not true for scalar residual-distribution
schemes (or any cell-vertex type schemes) that directly solve (2.1), resulting in a discrete problem overdetermined by
one extra cell-residual.

To begin residual-distribution, we first define the cell-residual, UC , as an integral value of the spatial part of the system
over the cell, C ¼ ½xj; xjþ1�,
UC ¼
UC

1

UC
2

" #
¼
Z xjþ1

xj

ð�AUx þ Q Þdx ¼ �ADUC þ Q ChC ¼ �AðUjþ1 � UjÞ þ wC
j Q j þwC

jþ1Q jþ1

� 	
hC

¼
�aðujþ1 � ujÞ þ mðpjþ1 � pjÞ

ðujþ1 � ujÞ=Tr � ðwC
jþ1pjþ1 þwC

j pjÞh
C
=Tr

" #
; ð2:42Þ
where hC ¼ xjþ1 � xj, and wC
j ;w

C
jþ1

� 	
is a set of quadrature weights that satisfy, within the cell,
wC
j þwC

jþ1 ¼ 1: ð2:43Þ
The choice of the weights is left open at this point; it will be discussed in the next subsection. Second, we distribute the cell-
residual to the nodes, j and jþ 1, by using the upwind distribution matrix (see [1]):
BC
j ¼

1
2

R
1� k1

jk1j

� �
0

0 1� k2

jk2j

� �
26664

37775R�1; ð2:44Þ

BC
jþ1 ¼

1
2

R
1þ k1

jk1j

� �
0

0 1þ k2

jk2j

� �
26664

37775R�1: ð2:45Þ
Each matrix projects the residual onto characteristic subspaces, and distributes the projected residuals to the left or the right
according to the sign of the characteristic speed. Under the assumption that a > 0, it immediately follows from (2.9) that
k1 < 0 and k2 > 0. Then, the distribution matrices can be simplified to
BC
j ¼

1
ReLr þ 2

1 Lr

ReLr þ 1
Lr

1þ ReLr

" #
; ð2:46Þ

BC
jþ1 ¼

1
ReLr þ 2

1þ ReLr �Lr

�ReLr þ 1
Lr

1

24 35; ð2:47Þ

3998 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
After completing the distribution step within all elements, we arrive at the following semi-discrete equation,
~hj
dUj

dt
¼ BL

j U
L þ BR

j U
R

h i
; ð2:48Þ
where L and R denote the cells on the left and right of the node j, respectively, and ~hj is the measure of the dual control vol-
ume around the node j defined by
~hj ¼
hL þ hR

2
ð2:49Þ
(see Fig. 4). Finally, we integrate the semi-discrete equation in time towards the steady state. In this study, we employ the
forward Euler time-stepping:
~hj
Unþ1

j � Un
j

Dt
¼ BL

j U
L þ BR

j U
R

h i
; ð2:50Þ
where the right hand side is evaluated at the time level n. The time step is restricted by the CFL condition (2.32); it is OðhÞ for
all Reynolds numbers. This is a fully-discrete explicit upwind residual-distribution scheme for the first-order advection–dif-
fusion system. Note that this scheme is a three-point compact difference scheme because it involves only the two neighbor
cells (hence two neighbor nodes).

It is instructive to expand (2.50) and look at the limiting behaviors of each component:
unþ1
j ¼ un

j þ
Dt
~hj

ðReLr þ 1ÞUL
1 þUR

1

ReLr þ 2
þ Lr

ReLr þ 2
UR

2 �UL
2

 �" #
; ð2:51Þ

pnþ1
j ¼ pn

j þ
Dt
~hj

UL
2 þ ðReLr þ 1ÞUR

2

ReLr þ 2
þ ReLr þ 1

LrðReLr þ 2Þ ðU
R
1 �UL

1Þ
" #

: ð2:52Þ
In the advection limit, ReLr !1 ðm! 0Þ, these reduce to
unþ1
j ¼ un

j þ
Dt
~hj

UL
1 ¼ un

j �
aDt
~hj

un
j � un

j�1

� 	
; ð2:53Þ

pnþ1
j ¼ pn

j þ
Dt
~hj

UR
2 þ

1
Lr

UR
1 �UL

1

 �� �
¼ pn

j þ
aDt
~hjLr

un
j � un

j�1

� 	
� wR

j pn
j þwR

jþ1pn
jþ1

� 	
hR

h i
: ð2:54Þ
Naturally, we have a scalar upwind scheme for uj. For pj, the scheme will be fully upwind by taking wR
j ¼ 1 and wR

jþ1 ¼ 0. We
discuss these quadrature weights in the next subsection in relation to numerical oscillations. On the other hand, in the dif-
fusion limit, ReLr ! 0 ða! 0Þ, we have
unþ1
j ¼ un

j þ
Dt
~hj

1
2

UL
1 þUR

1

 �
þ Lr

2
UR

2 �UL
2

 �� �
; ð2:55Þ

pnþ1
j ¼ pn

j þ
Dt
~hj

1
2

UL
2 þUR

2

 �
þ 1

2Lr
UR

1 �UL
1

 �� �
: ð2:56Þ
These are central schemes (with appropriate dissipation terms which vanish in the steady state) suitable for diffusion prob-
lems. Note that these central schemes have emerged as a result of applying upwind schemes for the two wave-like compo-
nents traveling in the opposite directions at the same speed [1]. It is remarkable that the scalar upwind scheme for advection
and the central scheme for diffusion have been integrated automatically, simply by applying a single upwind scheme for the
entire first-order advection–diffusion system. In particular, no considerations on any Reynolds number effects was neces-
sary. The scheme adjusts itself to respond to the balance between advection and diffusion. Again, this is due to the unifica-
tion of advection and diffusion in the differential level. Any schemes developed for the entire first-order advection–diffusion
system will have a similar property.

To see how the upwind and central schemes are combined into one, note first that the distribution matrices (2.46) and
(2.47) are the projection matrices, (2.16) and (2.17):
Fig. 4. Distribution of cell-residuals in one dimension.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 3999
BC
j ¼ P1; BC

jþ1 ¼ P2; ð2:57Þ
and recall that each projection matrix can be written as a linear combination of its advection and diffusion limits, i.e., (2.19).
Then, we can express the distribution matrices as
BC
j ¼ P1 ¼

ReLr

ReLr þ 2
PA

1 þ
2

ReLr þ 2
PD

1 ¼
ReLr

ReLr þ 2
0 0
1
Lr

1

" #
þ 2

ReLr þ 2

1
2

Lr
2

1
2Lr

1
2

" #
; ð2:58Þ

BC
jþ1 ¼ P2 ¼

ReLr

ReLr þ 2
PA

2 þ
2

ReLr þ 2
PD

2 ¼
ReLr

ReLr þ 2
1 0
� 1

Lr
0

" #
þ 2

ReLr þ 2

1
2

�Lr
2

� 1
2Lr

1
2

" #
: ð2:59Þ
This shows that each of the upwind distribution matrices, BC
j and BC

jþ1, can be thought of as a weighted average of an upwind
distribution matrix for advection and another upwind distribution matrix for diffusion.

2.5. Source term discretization and cell Reynolds number

It is important to note that the upwind distribution does not guarantee monotone solutions in the steady state. To see
this, suppose we employ the trapezoidal rule to discretize the source term in (2.42):
wC
j ¼ wC

jþ1 ¼
1
2
; ð2:60Þ
which ensures second-order accuracy of the cell-residual, UC . Also, recall that all cell-residuals vanish in the steady state, i.e.,
UL ¼ UR ¼ 0; ð2:61Þ
for the left and right cells of all j 2 fJg. Then, we find from this pair of vanishing cell-residuals with h ¼ hL ¼ hR that the stea-
dy state solution satisfies
a
ujþ1 � uj�1

2h
¼ m

ujþ1 � 2uj þ uj�1

h2 ; ð2:62Þ
and the same for pj. This can be written as
uj ¼
1
2

1� Reh

2

� �
ujþ1 þ

1
2

1þ Reh

2

� �
uj�1; ð2:63Þ
where Reh is the cell Reynolds number defined by
Reh �
ah
m
: ð2:64Þ
This is nothing but the classical central-difference approximation to the steady advection–diffusion equation; it is prone to
spurious oscillations because the coefficient for ujþ1 goes negative when Reh > 2. Note that this is derived from the cell-resid-
uals only, and has nothing to do with the distribution matrix. To avoid oscillations, therefore, we must modify the cell-resid-
uals such that they correspond to an upwind discretization in the steady state. This is possible through the source term, and
in fact, a one-sided evaluation of the source term,
wC
j ¼ 1; wC

jþ1 ¼ 0; ð2:65Þ
leads to the classical upwind discretization of the steady equation:
a
uj � uj�1

h
¼ m

ujþ1 � 2uj þ uj�1

h2 ; ð2:66Þ
i.e.,
uj ¼
Reh þ 1
Reh þ 2

ujþ1 þ
1

Reh þ 2
uj�1; ð2:67Þ
and the same for pj. Observe that all coefficients are now positive for all Reh. The accuracy of the cell-residual, however, dete-
riorates to first-order for this choice.

To achieve second-order accuracy without oscillations, we must construct a grid such that Reh 6 2 is satisfied. This re-
quires extremely fine grids for advection-dominated flows; it can be too restrictive. In regions where a solution is nearly uni-
form, the condition may be violated without introducing serious oscillations. In practice, therefore, it generally suffices to
satisfy Reh 6 2 in high-gradient regions, e.g., boundary layers. We may also employ the above quadratures locally in an adap-
tive manner: one-sided for Reh > 2; the trapezoidal rule for Reh 6 2, depending on the local mesh size. In order to suppress
oscillations completely while keeping the second-order accuracy, we need to incorporate non-oscillatory schemes. This is a
subject of future work.

4000 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
2.6. Accuracy

Expand smooth functions u and p around a node j, and substitute them into the semi-discrete equation (2.48) to get
dUj

dt
¼ 1

~hj

BR
j hR þ BL

j hL
� 	

ð�AUx þ Q Þ þ 1

2~hj

BR
j ðh

RÞ2 � BL
j ðh

LÞ2
n o

ð�AUx þ Q Þx

þ 1
~hj

BR
j wR

j �
1
2

� �
ðhRÞ2 � BL

j wL
j �

1
2

� �
ðhLÞ2

� �
Q x þ Oðh2Þ: ð2:68Þ
If the smooth functions are exact steady solutions of the first-order system, the time derivative as well as the spatial terms on
the right vanish, and we are left with the terms on the second line, which is the local truncation error, TE,
TE ¼ 1
~hj

BR
j wR

j �
1
2

� �
ðhRÞ2 � BL

j wL
j �

1
2

� �
ðhLÞ2

� �
Q x þ Oðh2Þ: ð2:69Þ
If the trapezoidal rule is used to discretize the source term on both cells, the leading term will vanish and the second-order
accuracy is obtained in the steady state. But if the one-sided quadrature is used in either cell, it remains finite and the accu-
racy reduces to first-order. Alternatively, we may deduce the accuracy of the scheme from the residual property: second-or-
der accurate with the trapezoidal rule because the residual (2.42) then vanishes for exact linear solutions; first-order
accurate with the one-sided quadrature because the residual (2.42) vanishes only for exact constant solutions. This is a gen-
eral result that is true for arbitrary grids.

2.7. Finite-volume form

It is well known that an upwind residual-distribution scheme is equivalent to a flux-difference splitting finite-volume
scheme in one dimension (see [18] for example). Our scheme is not an exception. We now show that our scheme can be
written as a finite-volume scheme. First, we express the products of the distribution matrix and A as
BC
j A ¼ P1A ¼ P1ðk1P1 þ k2P2Þ ¼ k1P1 ¼

1
2
ðA� jAjÞ; ð2:70Þ

BC
jþ1A ¼ P2A ¼ P2ðk1P1 þ k2P2Þ ¼ k2P2 ¼

1
2
ðAþ jAjÞ; ð2:71Þ
where
jAj � RjKjL ¼ jk1jP1 þ jk2jP2: ð2:72Þ
Using these relations, we can expand and rewrite the semi-discrete scheme (2.48) as
~hj
dUj

dt
¼ BL

j U
L þ BR

j U
R ¼ �1

2
ðAþ jAjÞDUL þP2Q LhL � 1

2
ðA� jAjÞDUR þP1Q RhR

¼ �1
2
ðf jþ1 � f j � jAjDURÞ þP1Q RhR þ 1

2
ð�f j þ f j�1 � jAjDULÞ þP2Q LhL

¼ �1
2
ðf j þ f jþ1 � jAjDURÞ þ 1

2
ðf j þ f j�1 � jAjDULÞ þP2Q LhL þP1Q RhR

; ð2:73Þ
where
f j ¼ AUj ¼
auj � mpj

�uj=Tr

� �
: ð2:74Þ
Therefore, our scheme is a finite-volume scheme:
~hj
dUj

dt
¼ �½Fjþ1=2 � Fj�1=2� þ ~Q j; ð2:75Þ
where
Fjþ1=2 ¼
1
2
ðf j þ f jþ1 � jAjDURÞ; ð2:76Þ

Fj�1=2 ¼
1
2
ðf j�1 þ f j � jAjDULÞ; ð2:77ÞeQ j ¼ P1Q RhR þP2Q LhL

: ð2:78Þ
This apparently first-order finite-volume scheme is second-order accurate in the steady state provided the trapezoidal rule is
used within each cell for Q L and Q R, as shown in Section 2.6. In effect, the particular source term discretization (2.78) makes
it possible to achieve second-order accuracy in the steady state without reconstructing the solution. It is important to note,

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4001
however, that the above argument is valid only for interior nodes, and appropriate boundary fluxes must be supplied on the
boundary nodes if it is implemented as a finite-volume scheme. On the other hand, no special boundary treatment is nec-
essary for the residual-distribution scheme because the boundary flux is already incorporated in the cell-residual over the
cell adjacent to the boundary. We simply ignore in (2.50) the left cell-residual at the left boundary point and the right
cell-residual at the right boundary point.

3. Two dimensions

We now consider two-dimensional problems. As we shall see, many remarkable properties of the one-dimensional
numerical scheme will directly carry over to two dimensions, and again they directly come from solving the first-order
advection–diffusion system, i.e., independently of discretization methods. Here, we construct a compact multidimensional
upwind scheme by using the residual-distribution method on fully irregular triangular grids.

For structured grids, the one-dimensional scheme can be applied as a finite-difference scheme or a finite-volume scheme
by decomposing the two-dimensional equation into dimension by dimension one-dimensional equations. This can be done
in a straightforward manner (see [17,19,20] for example). We point out also that a finite-volume scheme can be developed in
a similar manner for unstructured grids by applying a one-dimensional flux function normal to each cell face. Applications to
other discretization methods will be undertaken in future, in relation to extensions to more complicated problems.

3.1. First-order advection–diffusion system

We consider the two-dimensional advection–diffusion problem,
ut þ aux þ buy ¼ mðuxx þ uyyÞ in X ¼ ð0;1Þ � ð0;1Þ; ð3:1Þ
where u is given on the boundary, a and b are constants (not necessarily positive), and m > 0. To compute the steady state
solution to this problem, we solve the following equivalent first-order system:
ut þ aux þ buy ¼ mðpx þ qyÞ;
pt ¼ ðux � pÞ=Tr;

qt ¼ ðuy � qÞ=Tr;

ð3:2Þ
where p and q are the gradient variables which will be equivalent to the solution gradients, ux and uy, respectively, in the
steady state. As in one dimension, this system is equivalent to the original advection–diffusion equation only in the steady
state, and it is again hyperbolic. In the vector form, the system (3.2) is written as
Ut þ AUx þ BUy ¼ Q ; ð3:3Þ
where
U ¼
u

p

q

264
375; A ¼

a �m 0
�1=Tr 0 0

0 0 0

264
375; B ¼

b 0 �m
0 0 0

�1=Tr 0 0

264
375; Q ¼

0
�p=Tr

�q=Tr

264
375: ð3:4Þ
Consider the Jacobian matrix An for an arbitrary vector n ¼ ðnx; nyÞ,
An ¼ Anx þ Bny ¼
an �mnx �mny

�nx=Tr 0 0
�ny=Tr 0 0

264
375; ð3:5Þ
where an is the advection velocity projected onto n:
an ¼ anx þ bny: ð3:6Þ
It is easy to show that it has a set of real eigenvalues,
k1 ¼
1
2

an �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ
4m
Tr

s" #
; k2 ¼

1
2

an þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ
4m
Tr

s" #
; k3 ¼ 0; ð3:7Þ
with linearly independent right-eigenvectors,
Rn ¼
�k1Tr �k2Tr 0

nx nx �ny

ny ny nx

264
375: ð3:8Þ
The system is therefore hyperbolic. The first two eigenvalues are essentially the same as the one-dimensional counterparts
except that they are now based on the projected velocity, an. The third eigenvalue, k3, is associated with the inconsistency

4002 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
damping mode which damps out any inconsistency (nonzero qx � py) that may be contained in an initial solution but must
vanish at a steady state. See [1] for details.

On the boundary, since u is given, we can specify the gradient variables in the direction along the boundary: p at y ¼ 0 or
y ¼ 1, and q at x ¼ 0 or x ¼ 1. Elsewhere, the gradient variables (the normal gradients) will be computed by a numerical
scheme. For problems with the Neumann boundary condition, the gradient variables can be directly specified on the bound-
ary. In effect, the Neumann condition turns into the Dirichlet condition in the first-order system approach.

To determine the time scale, Tr , we proceed as in one dimension: we set
Tr ¼
Lr

k2
; ð3:9Þ
and solve it for Tr to get
Tr ¼
Lr

janj þ m=Lr
; ð3:10Þ
where we have replaced an by janj to keep Tr positive. We then substitute this back into the eigenvalues and find
k1 ¼ a�n 1� 1
Re�Lr

 !
; k2 ¼ aþn 1þ 1

ReþLr

 !
; k3 ¼ 0; ð3:11Þ
where
Re�Lr
¼ a�n Lr

m
; ReþLr

¼ aþn Lr

m
; ð3:12Þ

aþn ¼maxð0; anÞ; a�n ¼ minð0; anÞ: ð3:13Þ
The right-eigenvector matrix (3.8) can now be written as
Rn ¼

Lr

ReþLr
þ 1

Lr

Re�Lr
� 1

0

nx nx �ny

ny ny nx

26664
37775: ð3:14Þ
The corresponding left-eigenvector matrix is given by
Ln ¼ R�1
n ¼

1
jReLr j þ 2

jReLr j þ 1
Lr

1þ ReþLr

 �
nx 1þ ReþLr

 �
ny

� jReLr j þ 1
Lr

1� Re�Lr

 �
nx 1� Re�Lr

 �
ny

0 �ny nx

2666664

3777775; ð3:15Þ
where
jReLr j ¼
janjLr

m
: ð3:16Þ
As in one dimension, the Jacobian matrix, An, can be decomposed as follows:
An ¼ k1P1;n þ k2P2;n; ð3:17Þ
where the projection matrices, P1;n and P2;n are given by
P1;n ¼
1

jReLr j þ 2

1� Re�Lr
Lrnx Lrny

jReLr j þ 1
Lr

nx 1þ ReþLr

 �
n2

x 1þ ReþLr

 �
nxny

jReLr j þ 1
Lr

ny 1þ ReþLr

 �
nxny 1þ ReþLr

 �
n2

y

2666664

3777775; ð3:18Þ

P2;n ¼
1

jReLr j þ 2

1þ ReþLr
�Lrnx �Lrny

� jReLr j þ 1
Lr

nx 1� Re�Lr

 �
n2

x 1� Re�Lr

 �
nxny

� jReLr j þ 1
Lr

ny 1� Re�Lr

 �
nxny 1� Re�Lr

 �
n2

y

2666664

3777775: ð3:19Þ
It can be easily verified that these projection matrices can be written as a linear combination of its advection and diffusion
limits, exactly as in the one-dimensional case, in the form of (2.19).

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4003
3.2. Length scale Lr

To determine the length scale, Lr , we again proceed as in one dimension and attempt to optimize the condition number of
the system. In so doing, since the third component, i.e., the inconsistency damping mode, has no wave-like character (the
source term is essential to describe its behavior), we focus on the two wave-like components. Substitute the Fourier mode,
of phase angle b ¼ ðbx; byÞ with bx; by 2 ½0;p�:
Ub ¼ eiðbxx=hþbyy=hÞU0: ð3:20Þ
Inserting this into the advection–diffusion system (3.2), we get
dUb

dt
¼ MUb; ð3:21Þ
where
M ¼

i
abx þ bby

h
m

ibx

h
m

iby

h
ibx

hTr
� 1

Tr
0

iby

hTr
0 � 1

Tr

266666664

377777775: ð3:22Þ
The eigenvalues of this matrix are given by
kM
1;2 ¼ �

1
2

1
Tr
þ ibab

h

� �
�

ffi
1
Tr
� ibab

h

� �2

� 4mb2

h2Tr

s24 35; kM
3 ¼ �1=Tr; ð3:23Þ
where
ab ¼
abx þ bby

b
; ð3:24Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q
: ð3:25Þ
The first two eigenvalues, which we focus on, are essentially the same as the one-dimensional eigenvalues (2.24). Therefore,
the analysis in Section 2.2 directly applies to these two eigenvalues, and the optimal formula (2.30) derived for the one-
dimensional system can be considered as optimal also in two dimensions, with
Rep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð1=pÞ

m
: ð3:26Þ
The two-dimensional advection–diffusion system (3.2) has now been completely defined. We are ready to discretize the sys-
tem. As discussed in Section 2.3, we expect to have OðhÞ time step for any discretization methods also in two dimensions.

3.3. Discretization on unstructured triangular grids

We consider discretizing the two-dimensional advection–diffusion system (3.3) on unstructured triangular grids. We be-
gin by dividing the domain into a set of triangles fTg and a set of nodes fJg, and store the solution at each node,
ðuj; pjÞ; j 2 fJg. Now, the task is to compute the steady state solution: fujg at the interior nodes and fpj; qjg at all nodes except
for the boundary nodes on which they can be computed from u given on the boundary.

To discretize the first-order advection–diffusion system on the triangular grid, we employ the residual-distribution meth-
od. We first define the cell-residual over a cell T (see Fig. 5) as
UT ¼
UT

u

UT
p

UT
q

2664
3775 ¼ Z

T
ð�AUx � BUy þ Q Þdxdy: ð3:27Þ
Assuming a piecewise-linear variation of U over the cell, we obtain
UT ¼ �
X3

i¼1

KiUi þ Q T ST ; ð3:28Þ
where
Ki ¼
1
2
ðA;BÞ 	 ni; Q T ¼

Q 1 þ Q 2 þ Q 3

3
; ð3:29Þ

Fig. 5. Distribution of a cell-residual to the set of vertices fiTg ¼ f1;2;3g. Each contribution is determined by multiplying the cell-residual by the
distribution matrix, BT

i , where i 2 fiTg.

4004 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
ni ¼ ðnix ;niy Þ is the scaled inward normal (see Fig. 6), and ST is the cell area. The source term has been discretized to ensure
the exactness for linear functions, and the derivatives, Ux and Uy, are evaluated by the Green–Gauss integration over the cell
which is also exact for linear functions. We remark here that in the definition of the cell-residual above, we set
Fig. 6.
scale) a
Tr ¼
Lr

jaj þ m=Lr
; ð3:30Þ
where jaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, so that Tr is constant within the cell. This is to ensure the residual property on the equations, ux � p

and uy � q; no updates will be sent to the nodal solutions if these equations are satisfied exactly over the cell in the integral
sense. We now distribute the cell-residual to the nodes by a distribution matrix, BT

i :
BT
i U

T ð3:31Þ

(see Fig. 5) where the distribution matrix is required to satisfy
X3

i¼1

BT
i ¼ I; ð3:32Þ
for conservation. In this work, we employ the matrix LDA scheme [21,22], which is an upwind scheme defined by
BT
i ¼ Kþi

X3

i¼1

Kþi

 !�1

; ð3:33Þ
Median dual cell around a node j over the set of surrounding triangles, fTjg. Sj is the dual cell area. nT
j is the scaled inward normal (not drawn to

ssociated with a triangle T 2 fTjg.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4005
where
Kþi ¼
1
2

Rni
Kþni

R�1
ni
¼ 1

2
Rni

0 0 0
0 aþni

1þ 1=ReþLr

 �
j ni j 0

0 0 0

264
375R�1

ni
¼ 1

2
aþni

1þ 1
ReþLr

 !
j ni j P2;ni

; ð3:34Þ
and all quantities with the subscript, ni, are evaluated by the unit vector ni=jnij. Note that we do not use (3.30) in computing
the distribution matrix to properly account for the characteristics of the hyperbolic system, and that ReþLr

is not a cell-wise
constant but depends on the scaled inward normal vector ni. After performing the distribution step all over the cells, we have
the following semi-discrete equation at each node:
dUj

dt
¼ 1

Sj

X
T2fTjg

BT
j U

T ; ð3:35Þ
where fTjg denotes a set of triangles that share the node j and Sj is the median dual cell area (see Fig. 6). This is then inte-
grated in time by the forward Euler time-stepping to reach the steady state. The time step is defined by
Dt ¼ CFL
2SjP

T2fTjg max
i2fiTg

aþni
1þ 1=ReþLr

 �
jnij

; ð3:36Þ
where CFL 6 1, which is OðhÞ since Sj ¼ Oðh2Þ and jnij ¼ OðhÞ.
Accuracy of residual-distribution schemes is obtained in the steady state, and generally determined by the exactness of

the cell-residuals: p-th order accurate if the cell-residual is exact for polynomials of degree p� 1 (see [16,23]). For the LDA
scheme above, the solution is expected to be second-order accurate since the cell-residuals are designed to vanish for linear
exact solutions. However, the accuracy of the gradient variables is not generally second-order. As demonstrated for diffusion
problems in previous studies, it is second-order for smooth grids [1] but first-order on irregular grids [24]. This is because the
cell-residuals are not designed to be exact for linear gradients, i.e., quadratic solutions. Consider the cell-residuals for the
equations for p and q:
UT
p ¼

1
Tr

Z
T
ðux � pÞdxdy ¼ 1

Tr

1
2

X3

i¼1

uinix � �pT ST

 !
; ð3:37Þ

UT
q ¼

1
Tr

Z
T
ðuy � qÞdxdy ¼ 1

Tr

1
2

X3

i¼1

uiniy � �qT ST

 !
: ð3:38Þ
The first term in each residual is the Green–Gauss evaluation of the solution derivative; this is exact only for linear solutions,
i.e., constant gradients. Therefore, although the source term has been designed to be exact for linear gradients, the whole
cell-residuals cannot be exact for linear gradients (quadratic solutions). Consequently, the scheme is expected to be only
first-order accurate for p and q in general although it recovers second-order accuracy for smooth grids [1]. To achieve sec-
ond-order accuracy for the gradient variables on arbitrary grids, we need to improve the accuracy of the Green–Gauss term
such that it will be exact for quadratic solutions. This can be achieved by the high-order curvature correction approach [24–
29]:
UT
p ¼

1
Tr

1
2

X3

i¼1

ðui þ diÞnix � �pT ST

 !
; ð3:39Þ

UT
q ¼

1
Tr

1
2

X3

i¼1

ðui þ diÞniy � �qT ST

 !
; ð3:40Þ
where di is the high-order curvature correction term given by
di ¼ �
1
6
ðDpiDxi þ DqiDyiÞ; ð3:41Þ
where Dpi denotes the difference of the nodal values of p taken counterclockwise along the edge opposite to the node i (e.g.,
Dp1 ¼ p2 � p3), and similarly for others. This corresponds to using, instead of the Green–Gauss integration, the Simpson’s rule
along each edge with midpoint values reconstructed by the Hermite interpolation (see [24]). These ‘corrected’ residuals are
now exact for quadratic solution, u, and thus exact for linear gradients, p and q, ensuring the second-order accuracy of the
gradient variables. Note that the correction term does not require any explicit gradient reconstruction (which was required
in [24–29]) since we now carry the gradients as unknowns and they are directly available at nodes. The scheme thus remains
compact; this is a great advantage of the first-order system approach.

We remark that it is possible to make the same high-order correction also to the advection term to devise a third-order
scheme for u. However, we do not consider such a scheme here because it is special for scalar equations and does not extend
in general to systems of equations. For general systems, p and q are diffusive fluxes, not necessarily the solution derivatives.

4006 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
We also point out that we expect third-order accuracy in the solution, u, in the diffusion limit. This is because the cell-resid-
ual for the advection–diffusion equation will be dominated by the diffusion term which is exact for linear gradients, meaning
exact for quadratic solution.

The source term quadrature in (3.29) has been chosen to ensure second-order accuracy, but it may produce oscillatory
solutions for high-Reynolds-number cases. An upwind quadrature is required for monotonicity. One possible formula is
the following:
Fig. 7.
the inte
�pT ¼ wT
1p1 þwT

2p2 þwT
3p3; ð3:42Þ

�qT ¼ wT
1q1 þwT

2q2 þwT
3q3; ð3:43Þ
where
wT
i ¼

k�iP3
m¼1k�m

; i ¼ 1;2;3; ð3:44Þ

k�i ¼ minð0; kiÞ; ki ¼
1
2
ða; bÞ 	 ni; ð3:45Þ
and we set b ¼ 0 for �pT while a ¼ 0 for �qT . It is easy to see that we have k�i ¼ 1 if the node i is the only upwind node. If there
are two upwind nodes, k�i gives a fraction of the triangle defined by the other two nodes and the intersection point of the line
along ða; bÞ passing through the downwind node to the area of the triangle, T (see Fig. 7). In either case, the quadrature
weights for the nodes in the downwind side will be effectively set to be zero. This gives monotone solutions, but the accuracy
reduces to first-order. Again, to suppress oscillations completely while retaining second-order accuracy, we need to incor-
porate non-oscillatory schemes. This will be explored in future.

4. Results

4.1. One-dimensional problem

We consider the following problem:
ut þ aux ¼ muxx þ qðxÞ in X ¼ ð0;1Þ; ð4:1Þ
with uð0Þ ¼ 0 and uð1Þ ¼ 1, where
qðxÞ ¼ p
Re
½a cosðpxÞ þ pm sinðpxÞ�; ð4:2Þ
and Re ¼ a=m. The source term has been introduced to make the steady state solution non-trivial in the diffusion limit. The
exact steady state solution is given by
uexactðxÞ ¼
expð�ReÞ � expðxRe� ReÞ

expð�ReÞ � 1
þ 1

Re
sinðpxÞ: ð4:3Þ
This is a smooth sine curve in the diffusion limit, but develops a narrow boundary layer near x ¼ 1 when advection domi-
nates (see Fig. 8).

We compute the steady state solution to this problem, by solving the equivalent first-order system:
ut þ aux ¼ mpx þ qðxÞ;
pt ¼ ðux � pÞ=Tr ;

ð4:4Þ
Quadrature weights given by (3.44) in the case of two upwind nodes. In actual implementation, we set b ¼ 0 for the integration of p while a ¼ 0 for
gration of q.

Fig. 8. Exact solutions (solid curves) and numerical solutions obtained by our advection–diffusion scheme (symbols: triangles, circles, squares) for
Re ¼ 1;10;102. A computational grid (33 nodes) used in the numerical tests is shown by stars in the bottom.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4007
with the upwind advection–diffusion system scheme developed in Section 2.4. For the length scale, Lr , we use the optimal
length scale in (2.30) and also Lr ¼ 1=p for comparison. The source term in the first equation does not affect the monotonicity
of the steady solution (unlike the one in the second equation as discussed in Section 2.5), and therefore it is evaluated by the
trapezoidal rule over each cell to ensure the second-order accuracy and added to the cell-residual. We start from the initial
solution, ðu; pÞ ¼ ðx2;2xÞ, and integrate in time until convergence by the forward Euler method. The method is taken to be
converged when the nodal residuals are reduced five orders of magnitude in the L1 norm. The time step is taken as global
with CFL ¼ 0:99. We conducted numerical experiments with non-uniform grids with the number of nodes, N ¼ 33, 65,
129, 257. Each grid was generated from a uniform grid by the following mapping:
Table 3
The num

log10

�3.0
�2.0
�1.5
�1.0
�0.5

0.0
0.5
1.0
1.5
2.0
3.0
xi ¼
1� expð�aniÞ
1� expð�aÞ ; ð4:5Þ
where ni ¼ ði� 1Þ=ðN � 1Þ; i ¼ 1;2;3; . . . ;N, and a ¼ 4:5 for all grids (see Fig. 8 for an example). In this study, we set a ¼ 1
and determine m for a given Reynolds number. Results were obtained for a wide range of the Reynolds numbers:
Re ¼ 10k, where k ¼ �3;�2;�1:5;�1;�0:5;0;0:5;1;1:5;2;3.

Table 3 shows the iteration numbers obtained with the optimal length scale (2.30). Remarkably, the number of iterations
to reduce the residuals by five orders of magnitude is nearly independent of the Reynolds number. This is considered due to
OðhÞ time step for all Reynolds numbers and also to the perfect preconditioning of the first-order system by the optimal Lr .
ber of iterations for the upwind advection–diffusion scheme with the optimal Lr (2.30) in one dimension.

Re Number of iterations

33 nodes 65 nodes 129 nodes 257 nodes

2976 7368 14,685 29,170
2979 7376 14,700 29,199
2986 7393 14,735 29,270
3010 7449 14,847 29,497
3086 7629 15,218 30,244
3349 8186 16,491 32,869
3175 7926 17,277 38,081
3999 7735 15,428 35,747
3062 7180 15,389 32,277
3214 6458 13,962 29,518
3286 6877 14,355 29,893

Table 4
The number of iterations for the upwind advection–diffusion scheme with Lr ¼ 1=p in one dimension.

log10Re Number of iterations

33 nodes 65 nodes 129 nodes 257 nodes

�3.0 3680 8825 17,697 41,274
�2.0 3688 8842 17,730 41,351
�1.5 3705 8882 17,810 41,536
�1.0 3761 9008 20,978 42,120
�0.5 3935 9401 21,836 43,947

0.0 4373 9000 21,356 43,014
0.5 3791 7713 18,945 38,766
1.0 4006 7574 16,570 36,420
1.5 3071 7197 15,422 32,344
2.0 3215 6460 13,967 29,528
3.0 3286 6877 14,355 29,893

4008 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
Table 4 shows the results obtained for the non-optimal value, Lr ¼ 1=p. Comparing with Table 3, we observe, as expected,
that the number of iterations is generally larger, especially in the intermediate region where the first-order system is not
perfectly conditioned, but it is nearly optimal in the advection limit. In the diffusion limit, the non-optimal length scale gives
a perfect preconditioning of the system as shown in Fig. 3, but it gives a slightly slower convergence. This is because the per-
fect conditioning for a differential system does not necessarily imply the perfect conditioning of the numerical scheme. As
shown in the previous study [1], the optimal length scale for our upwind scheme has a leading term, 0:5=p, in the diffusion
limit. The diffusion limit of the optimal formula (2.30) is Lr ¼ 1ffiffi

2
p

p
 0:707=p; it is much closer to this leading term than the
other one, Lr ¼ 1=p, thus giving a faster convergence with the optimal formula (2.30). We also point out that the convergence
in the diffusion limit can be much faster in practice because the grid stretching is not required and a uniform grid can be
safely employed (a much larger minimum mesh spacing than stretched grids).

To demonstrate the impact of OðhÞ time step on the number of iterations, we computed the same steady state solution by
integrating the scalar advection–diffusion equation in time, again until the residual is reduced by five orders of magnitude, with
a spatially second-order Galerkin scheme derived with a continuous piecewise-linear basis function over a non-uniform grid:
Fig. 9.
diffusio
unþ1
j ¼ un

j þ
2Dt

xjþ1 � xj�1
�a

un
jþ1 � un

j�1

2
þ m

un
jþ1 � un

j

xjþ1 � xj
�

un
j � un

j�1

xj � xj�1

� �� �
: ð4:6Þ
The number of iterations to reduce the nodal residuals by five orders of magnitude for one-dimensional schemes. Circles: our upwind advection–
n system scheme for all values of Re in Table 3. Squares and stars: the scalar Galerkin scheme for Re ¼ 102 and 103, respectively.

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4009
For this scalar scheme, the time step is restricted by (2.33) which is Oðh2Þ in general. Fig. 9 shows the iteration number versus
the mesh size, for our system scheme with the optimal Lr and for the scalar Galerkin scheme. It is clearly seen that the num-
ber of iterations for the scalar scheme increases quadratically with the mesh size even for a fairly advection-dominated case,
Re ¼ 103. On the other hand, for our system scheme, the number of iterations grows linearly with the mesh size for all Rey-
nolds numbers. This is a natural consequence of solving the system that is hyperbolic for all Reynolds numbers.

Fig. 10(a) and 10(b) show L1 error convergence results: Fig. 10(a) for the main variable, u, Fig. 10(b) for the gradient var-
iable, p. Note that the solution errors are independent of the choice of Lr; we obtained exactly the same results for both the
optimal and non-optimal length scales because the discrete steady state solution is unique. Here, for a better visibility, we
shifted the results with respect to those for Re ¼ 10�3 so that it can be read from the top to the bottom for increasing Rey-
nolds numbers (only the errors for Re ¼ 10�3 can be correctly read off from the numbers indicated along the vertical axis).
These figures show clearly that our system scheme is uniformly second-order accurate for all Reynolds numbers and all vari-
ables, including the gradient variable on the boundary. These results demonstrate that the scheme maintains its accuracy
through the boundary.

Fig. 11 shows the CPU time versus the number of unknowns for the scalar Galerkin scheme and our system scheme. It
clearly shows that our system scheme is orders of magnitude faster than the scalar Galerkin scheme for a comparable num-
ber of unknowns. These results also confirm the estimates in Table 1: CPU ¼ OðN2Þ for OðhÞ time step, and CPU ¼ OðN3Þ for
Oðh2Þ time step. Fig. 12 shows the solution error versus CPU time. We observe that the error levels are comparable for each
case, but the CPU time is orders of magnitude larger for the scalar Galerkin scheme. The rates of decrease in the solution error
are in good agreement with those predicted in Table 2 for second-order accuracy ðp ¼ 2Þ : E ¼ OðCPU�1Þ for OðhÞ time step,
and E ¼ OðCPU�2=3Þ for Oðh2Þ time step. These results demonstrate that the system scheme based on the first-order system be
much more efficient than the scalar Galerkin scheme in spite of the additional cost of computing an extra variable. In fact, the
system scheme was found to be about 3 times more expensive per iteration than the scalar Galerkin scheme. But the OðNÞ
speed-up in iterations did overwhelm this additional cost as predicted in Section 2.3.

In this numerical experiment, we employed the trapezoidal rule in the source term discretization for all cases. Although
the condition, Reh 6 2, is violated in some region, since it is almost always satisfied near the narrow layer, we do not observe
any serious oscillations (see Fig. 8).

4.2. Two-dimensional problems

We now consider the two-dimensional advection–diffusion problem:
Fig. 10.
Reynold
ut þ aux þ buy ¼ mðuxx þ uyyÞ in X ¼ ð0;1Þ � ð0;1Þ; ð4:7Þ
with the solution specified on the boundary by the following boundary-layer type exact steady solution [30],
L1 errors obtained by our upwind advection–diffusion system scheme for the one-dimensional problem. Second-order accuracy is confirmed for all
s numbers.

Fig. 11. CPU time versus the number of unknowns for one-dimensional schemes. CPU time is measured in seconds. Circles are used for our upwind
advection–diffusion system scheme for all the Reynolds numbers. Symbols with dashed lines are used for the scalar Galerkin scheme: squares for Re ¼ 0,
triangles for Re ¼ 10, and stars for Re ¼ 102.

Fig. 12. L1 error of u versus CPU time for one-dimensional schemes. CPU time is measured in seconds. Solid lines are for our upwind advection–diffusion
system scheme and dashed lines are for the scalar Galerkin scheme: squares for Re ¼ 0, triangles for Re ¼ 10, and stars for Re ¼ 102.

4010 H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016
uðx; yÞ ¼
1� exp ðx� 1Þ a

m

 ��
1� exp ðy� 1Þ b

m

 ��
1� exp � a

m

 ��
1� exp � b

m

 �� : ð4:8Þ

H. Nishikawa / Journal of Computational Physics 229 (2010) 3989–4016 4011
To compute the steady state solution numerically, we integrate the first-order system in time:
ut þ aux þ buy ¼ mðpx þ qyÞ;
pt ¼ ðux � pÞ=Tr;

qt ¼ ðuy � qÞ=Tr;

ð4:9Þ
until we reach the steady state. On the boundary, in addition to the solution value, we specify also the tangential gradients
along on the boundary (simply because they can be computed from the solution on the boundary). The advection velocity is
fixed as ða; bÞ ¼ ð1:0;0:8Þ for this study. The viscosity coefficient, m, is determined for a given global Reynolds number,

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
=m. For the length scale Lr we use the optimal formula (2.30) for all cases. The initial solution is set to be zero

for all variables at all nodes except where the boundary condition is given. The time step is taken as global with CFL ¼ 0:99
for all cases.

We present results for the multidimensional upwind scheme developed for triangular grids in Section 3.3 on a series of
irregular triangular grids: each grid generated from a structured grid with random diagonal splittings and nodal perturba-
tions (see Fig. 13). In the cell-residuals for the gradient variables, we employed the high-order curvature correction as de-
scribed in Section 3.3 to ensure second-order accuracy for all variables. There are seven irregular grids, generated
independently: 17� 17; 24� 24; 33� 33; 41� 41; 49� 49; 57� 57, and 66� 66 grids. To reach the steady state, we
march in time until the residual is reduced by 10 orders of magnitude, with the second-order accurate source term quadra-
ture. Results were obtained for a set of Reynolds numbers: Re ¼ 10k; k ¼ �2;�1:5;�1;�0:5;0;0:5;1;1:5;2.

L1 error convergence results are shown in Fig. 14 for both the solution and the gradient variables. As can be seen clearly,
the scheme is second-order accurate for all variables and for all Reynolds numbers. Note that the error of u shows a third-
order behavior in the diffusion dominated cases, thanks to the high-order curvature correction as discussed in Section 3.3. L1
errors (not shown) show some irregularity but generally go down at second-order accuracy. Fig. 15 shows the number of
iterations to reach the steady state versus the square root of the number of nodes. Circles indicate the iteration numbers
for our system scheme; squares indicate the iteration numbers for a scalar scheme with Oðh2Þ time step restriction. The sca-
lar scheme is constructed by adding the standard (continuous piecewise-linear) Galerkin discretization for diffusion to the
scalar LDA scheme for advection, incorporating a blending function proposed in [12] to make the scheme uniformly accurate
for all Reynolds numbers. The blending function is necessary because simply adding the scalar Galerkin scheme and the LDA
scheme does not guarantee uniform accuracy as pointed out in [11]. It is observed in Fig. 15 that the number of iterations is
proportional to square root of the grid size for our system scheme, whereas it increases quadratically for the scalar scheme.
Also, observe that the number of iterations is almost independent of the Reynolds number for our system scheme.

Fig. 16 shows the CPU time versus the number of unknowns for our system scheme and the scalar LDA–Galerkin scheme.
Here, the system scheme was found to be about 7 times more expensive per iteration than the scalar LDA–Galerkin scheme.
However, despite the additional cost, again, the system scheme converged faster in the CPU time than the scalar LDA–Galer-
kin scheme in most cases as seen in Fig. 16. Again, the results are consistent with the estimates in Table 1: CPU ¼ OðN3=2Þ for
OðhÞ time step, and CPU ¼ OðN2Þ for Oðh2Þ time step. In a high-Reynolds number case ðRe ¼ 102Þ, the scalar scheme actually
Fig. 13. Irregular triangular grid generated from a structured quadrilateral grid by random diagonal splittings and nodal perturbations.

Fig. 14. L1 errors for our LDA advection–diffusion system scheme on unstructured triangular grids.

Fig. 15. The number of iterations to reduce the nodal residuals by 10 orders of magnitude for the unstructured grid schemes. Circles: our LDA advection–
diffusion system scheme for Re ¼ 10k , k ¼ �2;�1:5;�1;�0:5; 0;0:5;1;1:5;2. Squar